
ORIGINAL PAPER

Hans van Os Æ Piet Stam Æ Richard G. F. Visser

Herman J. van Eck

SMOOTH: a statistical method for successful removal of genotyping
errors from high-density genetic linkage data

Received: 12 August 2004 / Accepted: 28 October 2004 / Published online: 29 October 2005
� Springer-Verlag 2005

Abstract High-density genetic linkage maps can be used
for purposes such as fine-scale targeted gene cloning and
anchoring of physical maps. However, their construc-
tion is significantly complicated by even relatively small
amounts of scoring errors. Currently available software
is not able to solve the ordering ambiguities in marker
clusters, which inhibits the application of high-density
maps. A statistical method named SMOOTH was
developed to remove genotyping errors from genetic
linkage data during the mapping process. The program
SMOOTH calculates the difference between the ob-
served and predicted values of data points based on data
points of neighbouring loci in a given marker order.
Highly improbable data points are removed by the
program in an iterative process with a mapping algo-
rithm that recalculates the map after cleaning.
SMOOTH has been tested with simulated data and
experimental mapping data from potato. The simula-
tions prove that this method is able to detect a high
amount of scoring errors and demonstrates that the
program enables mapping software to successfully con-
struct a very accurate high-density map. In potato the
application of the program resulted in a reliable place-
ment of nearly 1,000 markers in one linkage group.
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Introduction

Linkage maps based on molecular markers are impor-
tant tools in genetic analysis. They are useful for the

localization of genes underlying quantitative traits,
marker assisted breeding and map based gene cloning.
Molecular marker systems like AFLP� (Vos et al. 1995)
allow that many markers can be generated in short time.
This leads to the construction of highly saturated maps
to enable fine-scale genetic mapping and the anchoring
of physical maps (Klein et al. 2000).

In principle, these highly saturated or high-density
maps can be constructed with the same software as ge-
netic linkage maps of normal density. Commonly used
programs like Joinmap (Stam 1993; Stam and Van Ooi-
jen 1995) and MapMaker (Lander et al. 1987) are very
suitable for low-density genetic linkage map construc-
tion. However, these methods have difficulty in solving
the increasing ordering ambiguities in denser maps
(Lincoln and Lander 1992; Van Os et al. 2005). Denser
maps have more loci than normal maps, but the offspring
genotypes contain the same amount of recombinations.
With these fixed amounts of recombinations, the in-
creased number of markers in denser maps are separated
on an average by less recombination events. Moreover,
mapping algorithms based on pairwise distances will try
to determine the order within clusters of markers; even
for co-segregating markers or markers that only differ in
a few scoring errors, but in fact share the same genetic
position. In high-density maps, errors do not only give
problems within marker clusters, but also across
recombination events and thus severely complicate the
establishment of the true marker order.

An accurate marker order is indispensible for further
application of the map, like for instance, map based
cloning. We state that marker order is more important
than estimated map distances. Map distance estimates
are trivial as they may vary across mapping studies by
several centimorgans. For clusters of markers that co-
segregate, the order is indeterminate. Therefore it is not
correct to suggest non-existing distance between markers
caused by scoring errors or missing values.

The troublesome data points in the data are most
likely to be caused by inaccurate scoring, but some data
points that cause ambiguities in the marker order can
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also be caused by double recombination events, gene
conversions, mutations and other biological phenomena.
These various causes of ambiguous data are collectively
called singletons. The term ‘singleton’ in the context of
mapping data has first been used to indicate the mis-
classification of a marker phenotype (Nilsson et al.
1993). A singleton is, in fact, a single locus in one plant
that appears to have recombined with both its directly
neighbouring loci (see Fig. 1). During map calculation,
every singleton has to be treated as the unlikely event of
a double recombination. We propose to identify and
temporarily remove the singletons from the data. By
eliminating these singletons, most ordering ambiguities
are solved, including those in marker dense clusters.

As a consequence, mapping algorithms will not be
hampered by these ordering ambiguities and can calcu-
late the best possible map for the data set. This ideal
framework map will be used to refit the raw data, sup-
plying the verification of this map and a quality label for
each marker that specifies the number of singletons these
markers contain.

In this paper a statistical method is presented that can
identify and remove the most obvious singletons in ge-
netic linkage data. The method uses the marker order
calculated by mapping software before eliminating the
singletons. It is implemented in a computer program for
the case of a first generation backcross population. This
paper illustrates the advantages and potential pitfalls of
eliminating singletons and provides concise instruction
on how this method should be applied.

The method is tested on simulated data for different
aspects like error percentage, population size and mar-
ker density. Besides the results of the simulation studies,
experiments with real mapping data from potato are
discussed as well.

Materials and methods

Software

The idea behind the identification of a singleton at a
particular marker locus, i, is to compare the observed

marker score at locus i, yi, with a local prediction of the
marker score, ŷi: The observed marker score, yi, takes
the value 1 when the allele is identified as coming from
one of the sister chromatids, and 0 when coming from
the non-sister chromatids. The local prediction of the
marker score ŷi is calculated as the weighted wj average
of the observed scores yj within a defined number of loci
L flanking locus i on either side:

ŷi ¼
P

j2L wjyj
P

j2L wj
;

with, L ¼ j : j � d; j 6¼ 0f g; where d is the maximum
number of flanking loci around locus i that contributes
to the local prediction for the marker score at i. Various
weighing regimes were tested in combination with dif-
ferent choices for d, but these parameter settings were
rather immaterial to the performance of the procedure.
For that reason we only present the results for d=15 loci
and with weights declining in a roughly quadratic fash-
ion (w1=0.998; w2=0.981; w3=0.934; w4=0.857; w5=
0.758; w6=0.647; w7=0.537; w8=0.433; w9=0.342;
w10=0.265; w11=0.202; w12=0.151; w13=0.112; w14=
0.082; w15=0.059).

The absolute difference between observed marker
score and predicted marker score, d ¼ yi � ŷij j; is pro-
portional to the probability that the marker score at i
represents a singleton. Threshold values for d, above
which singletons are identified, were adaptively chosen.

Illustration of application

Before SMOOTH can be applied to the data, a pre-
liminary marker order has to be established. This map is
the starting point for singleton detection and is still far
from ideal. Although a singleton is context dependent,
the most obvious singletons are clearly perceptible even
in less ideal maps.

In Fig. 2, the difference d for one female gamete in
the ultra-dense AFLP map of one chromosome of po-
tato (Isidore et al. 2003) is shown. This gamete was the
result of two recombination events: one recombination
event occured between locus 76 and locus 77 and one
recombination event occured between locus 944 and
locus 954. Around the recombination events, the value
of d approaches 0.5. The most likely singletons (d=1)
can be observed at loci 2, 21, 105, 474, 508, 536, 615,
735, 793, 898 and 918.

When the value d of each data point is calculated, a
threshold for singleton removal can be set. The single-
tons are removed in an iterative process, alternately
using a mapping algorithm and SMOOTH. In other
words, a mapping algorithm like RECORD (Van Os
et al. 2005) is used to calculate the marker order, sub-
sequently SMOOTH is used to remove singletons, after
which the marker order is recalculated with RECORD,
etc. In principal, all mapping algorithms can be used,
but data sets containing 500 markers demand only
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Fig. 1 Four meiotic products after a double recombination event
involving two non-sister chromatids causing a singleton at locus
‘G/g’. The bar indicates a chromatid, whereas the centromere is
represented by a circle
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20 min for analysis with RECORD on a 350 MHz
processor. By comparison, JoinMap will take 9 days to
calculate a map from a linkage group containing 500
markers on the same type of machine. In the first cycle
of the iteration, a high threshold (0.99) is set and the
most likely singletons are replaced by missing values.
During the following cycles, the threshold is slightly
decreased. Using more cycles in the iteration and smaller
decreasing steps in the threshold, singleton removal is
more accurate. In this experiment, the iteration is con-
tinued for 15 cycles while decreasing the threshold with
0.02, until the final threshold of 0.70 is reached. At this
point, most singletons are removed from the data.
Empirical evidence will be provided below, that at
threshold 0.70, the amount of singletons that remain in
the data set is in balance with the number of correct data
points that are unjustly removed.

After removing all singletons, an unambiguous
framework map can be constructed. Subsequently, the
original marker data can be fit into the framework map
by maximum likelihood, providing a verification of the
framework map and also a quality label for each marker.

Simulations are used to demonstrate that the pro-
gram detects the singletons and that eventually the
correct marker order is obtained. The practical appli-
cability is established by the analysis of an experimental
data set of potato comprising 971 markers in 130 indi-
viduals.

Simulated data

The power of SMOOTH to detect singletons was tested
on simulated data. For this purpose, several first gen-
eration backcross (BC1) populations were generated
varying in the number of loci, population size and error
percentage as shown in Table 1.

The simulated data were produced as follows: a given
number of loci were randomly positioned (according to
a Poisson process) along a single chromosome of 50 cM;
genotypes were generated for a BC1 progeny following
standard Mendelian segregation (assuming no crossover
interference). Errors were randomly introduced in the

data set and the positions of these errors were stored in a
logfile. The range of error percentages increased from 1
to 25% thus creating 25 data sets for each population. In
Experiment I, emphasis is put on both error percentage
and marker density. In Experiment II, the effect of error
percentage and population size is evaluated.

Corrected data sets were obtained from each simu-
lated data set with introduced errors by calculating
marker orders with RECORD (Van Os et al. 2005) and
removing singletons with SMOOTH. In the mean time,
SMOOTH kept track of all the data points that were
removed during the mapping and cleaning process. After
completion of the process, this list of removed data
points was compared with the list of introduced errors.
From this comparison, the number of errors were
counted that were found and missed by SMOOTH. Also
the number of correct data points that should not have
been removed were counted. The marker order before
and after cleaning with SMOOTH was compared with
the original simulated map, using Spearman’s rank-or-
der correlation coefficient rs, between the expected
marker position on the simulated map and the observed
marker position on the map calculated by ORD.

Experimental data

Besides the simulations, actual mapping data were
analyzed from the ultra-dense genetic map of potato
(Isidore et al. 2003). From the data set of this out-
breeding population, the AFLP markers segregating
from only one parent were considered. Both parental
maps were analyzed separately. In the maternal map,
4,187 marker were segregating and 3,413 markers seg-
regated in the paternal map. Grouping was done with
JoinMap 2.0 and divided the data in 12 groups. A pre-
liminary marker order was used to assign the linkage
phase to all markers based on their flanking markers.
After linkage phase assignment, the data could be trea-
ted as if it were a first generation backcross. This ap-
proach, also called two-way pseudo-testcross
(Grattapaglia and Sederoff 1994), is commonly applied
for map construction in populations descending from
non-inbred parents.

Marker ordering was done by RECORD, while
SMOOTH cleaned the data from singletons applying the
same approach as was used for the simulations.
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Fig. 2 The difference d for all 971 loci in a particular gamete in the
ultra-dense potato map. Data from chromosome I (Isidore et al.
2003)

Table 1 Values for simulation variables used in the two different
simulation experiments

Variables Experiment I Experiment II

Map length (cM) 50 (fixed) 50 (fixed)
Number of loci 10, 25, 50, 100, 250, 500 100 (fixed)
Population size 100 (fixed) 50, 100, 150
Percentage scoring
errors

1, 2, 3,...,25% 1, 2, 3,...,25%

Percentage missing
observations

0% (fixed) 0% (fixed)
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Results

Simulated data

The utility of SMOOTH in obtaining an accurate mar-
ker order was evaluated by simulation experiments. In
Experiment I, the effect of error percentage and marker
density were assessed. The accuracy of the marker order
with and without the application of SMOOTH was
examined using the rank correlation coefficient between
the calculated marker order and the simulated marker
order. The quality of dense genetic maps can be im-
proved considerably by the application of SMOOTH.
The value of SMOOTH was most obvious in the data set
with the highest marker density in Experiment I. The
rank correlation coefficients for this data set consisting
of 500 loci and 100 individuals are shown in Fig. 3.
Results are generated for error percentages ranging from
1 to 25%. Rank correlation coefficients are shown for
both approaches, i.e. before and after cleaning with
SMOOTH. Without SMOOTH, marker orders with
intolerable inaccuracy are produced, when more than
5% error is present. However, SMOOTH enables
mapping software to calculate accurate maps from data
sets with error levels up to 20%. Obviously SMOOTH is
able to recognize most of the singletons in the data and
enables the mapping software to accurately position the
markers.

To understand the process of singleton removal in
detail, the detected singletons were compared with the
introduced errors in the data sets. In this comparison
we monitored the unjustly removal of correct data
points and the errors that were not detected by
SMOOTH. Figure 4 shows the percentage of errors
that were not detected by SMOOTH and the per-
centage of data points that were unjustly removed
from the total amount of data points in the same data
set as mentioned in Fig. 3. SMOOTH recognizes the
vast majority of errors, e.g. at 10% error level, 95% of
the errors were detected, reducing the amount of errors
to 0.5%. The number of errors that were not detected
and the number of data points that were unjustly re-
moved are more or less similar for lower error levels.
This indicates that the choice to stop SMOOTH at a
final threshold of d=0.7 is justified. By decreasing this
threshold even further, the number of data points that
are unjustly removed would increase and surpass the
number of undetected errors.

Close inspection of the position of errors that were
not detected or data points that were unjustly removed,
revealed that they occurred near recombinations and at
the ends of the map. Close to recombination events, the
flanking markers at either side of the recombination
offer contradicting information. Therefore error detec-
tion in the vicinity of recombination events is more
complicated. At the ends of the map, the difference be-
tween the last recombination or the last singleton cannot
be determined. Therefore the last recombination event

should be confirmed by at least two markers distal to
that recombination.

Marker density is an important factor to enable error
detection, as can be observed from the results of
Experiment I shown in Fig. 5. The percentage of unde-
tected errors is lower in data sets with a higher marker
density. This is not surprising because the concept of
smoothing genetic linkage data is based on the redun-
dancy in genetic information. In high density data sets,
the required amount of 30 neighbouring data points at
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Fig. 3 The rank correlation coefficient between the calculated map
and the original simulated map before (‘open square’) and after
(‘open circle’) using SMOOTH for different levels of scoring errors
based on simulated data sets with 500 loci on 50 cM and 100
individuals
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Fig. 4 The percentage of remaining errors from the total data set
(‘·’) and the percentage of unjustly removed data points (‘+’) for
different levels of scoring errors based on simulated data sets with
500 loci on 50 cM and 100 individuals
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close genetic distance is available, but data sets with ten
markers per linkage group only contain up to nine
neighbouring data points over a large distance to predict
the marker score.

The effect of population size was analyzed in Exper-
iment II. Figure 6 shows that marker ordering is more
accurate in larger populations. In fact, this is not the
result of applying SMOOTH, but due to the increased
performance of the mapping algorithm. As population
size increases, more recombination events between a pair
of markers can be observed, which adds to the resolution
between the markers. The ordering of the markers will
be more accurate and the relative impact of missing
observations and singletons will decrease. Furthermore,
the marker score predictions by SMOOTH will be more
precise due to the more accurate order of the markers.

Experimental data

To compare the results from the simulations with real
data, the software was tested on a data set from the
high-density map of potato (Isidore et al. 2003). After
cleaning the data with SMOOTH, the data were visually
inspected for any undetected errors. This revealed a
systematic error caused by a group of markers based on
AFLP primer combinations from a batch of newly iso-
lated DNA. The confusion of genotypes was solved by
removing these individuals from the new set of markers.

When all data ambiguities were removed, a vast
amount of redundancy was observed. For instance in
chromosome I and IV, a large cluster of cosegregating
markers, presumably the centromeric region, contained
more than half of the total amount of markers in both
the maternal and paternal map. Finally, by deleting the

redundant markers from all linkage groups, framework
maps were obtained that only consist of unique cor-
rected markers. These markers were converted into bin
signatures by restoring all missing values that were not
flanked by recombination events. A bin is a unique and
most accurate representation of a marker at a certain
genetic position. A bin contains at least 1 marker and
cannot be divided within the given population. Bins are
numbered consecutively, based on the recombination
events. As a consequence, the bin numbers can be di-
rectly translated into map units. Both parental frame-
work maps were free from ambiguities and all the
markers were fitted into the most likely bin by maximum
likelihood. The map was inspected for possible incon-
sistencies with the refitted markers and some minor
corrections were made to the bins. Redundant and
empty bins were removed; bins that appeared to contain
a recombination event were split up and missing values
in the bin signature were restored if possible.

To illustrate the difference between a framework map
as described above and a conventional map obtained
with JoinMap or RECORD, two linkage groups are
shown in Fig. 7. These linkage groups were derived from
the high-density map of potato and represent the
paternal map of chromosome III and IX respectively.
Linkage group III comprised 124 AFLP markers and
linkage group IX comprised 190 AFLP markers. No
clustering of markers was observed for linkage group
III, but linkage group IX contained a centromeric
cluster of 27 cosegregating markers. The marker order
from RECORD is basically the same as the order in the
framework map. However, four markers with an
exceptional high number of scoring errors are positioned
at the end of the linkage group; a commonly observed
artifact of mapping software. Major ordering ambigui-
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Fig. 5 The percentage of remaining errors from the total data set
for different levels of scoring errors based on simulated data sets
with 100 individuals. The number of loci is indicated by: ‘open
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and the original simulated map after using SMOOTH for different
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ties can be observed around the centromeric cluster in
linkage group IX. JoinMap produces a map which is in
length roughly similar to the framework map. However,
some map inflation can be observed at both ends of the
linkage groups. Ordering ambiguities are more abun-
dant in marker dense areas: markers from the centro-
meric cluster with elevated levels of singletons are
pushed away from the centromeric region and dispersed
towards the distal ends of the map.

In the data set of the high density genetic linkage map
of potato, the number of singletons for each marker was
calculated by comparing the original data of each mar-
ker with the signature of its most likely bin (see Fig. 8).
The average number of singletons per marker was 3.9 in
130 individuals (3.0%). In contrast with the simulations,
the distribution of singletons in the experimental data
was not random. In the maternal map, one third of the
markers did not contain any singletons, which provides
a verification for the framework map. However, some
markers contained up to 38 singletons. In fact, 10% of
the markers were responsible for more than half of the
scoring errors. Despite the fact that in reality singletons

are not randomly distributed, SMOOTH was able to
detect them to enable the construction of a solid
framework map.

Discussion

Singletons, whether or not caused by biological phe-
nomena or human error, seriously hamper high-density
genetic linkage map construction. For calculating a
reliable linkage map or marker order, these singletons
have to be removed. We devised a statistical method to
detect and remove singletons from high-density genetic
linkage data. The approach is based on predicting
marker scores on the basis of the available neighbouring
data points, which are more abundant in denser maps.
Although in denser maps the rising amount of errors
becomes increasingly difficult to handle with current
mapping software, this new method takes advantage of
the redundancy in high density data sets. The excess of
markers within a close genetical range, are the basis of a
reliable estimate of the marker score. By removing

Paternal maps of chromosome III and chromosome IX

RECORD Framework-Bins JoinMap RECORD Framework-Bins JoinMap

Fig. 7 Comparison between three methods of linkage map con-
struction on two different linkage groups. The framework map in
the middle is obtained by SMOOTH and the uncleaned markers
have been refitted in the bins. Flanking maps have been constructed
from the uncleaned data set by RECORD and JoinMap. The
paternal map of potato linkage group III from the the high-density
map of potato (Isidore et al. 2003) is shown on the left, the paternal
map of potato linkage group IX is shown on the right. Relative

marker positions are displayed by aligning the results of the three
methods of linkage map construction. RECORD produces a
marker order; distances are proportional to the number of markers.
The distances between the bins in the framework map depend on
the number of recombination events, which are transformed into
centiMorgans. The markers on the map produced by JoinMap are
displayed at their corresponding centiMorgan position
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highly unlikely marker scores from the data, the true
recombination events will remain in the data and facil-
itate marker ordering.

SMOOTH has been extensively tested on simulated
data. The results have provided convincing evidence that
more than 95% of the singletons can be detected. With a
large amounts of errors present in the data, a reliable
and accurate map can only be constructed when apply-
ing SMOOTH. Therefore we conclude that the program
has great utility in high density mapping, which is pro-
ven by the successful application to the experimental
data set of potato for the construction of an accurate
framework map.

It is advisable to use SMOOTH for data sets with at
least 100 loci per linkage group, because the error
detection is dependent on the amount of neighbouring
markers. Although the program is therefore not in-
tended for globally smoothing low-density maps, it can
be useful in cleaning up marker dense clusters in low
density maps. These marker clusters are regularly ob-
served in genetic maps (Strommer et al. 2002) and are
often situated around the centromere of the chromo-
some where recombination is suppressed.

The error detection works less on the two distal ends
of the chromosome and close to recombination events.
Here, the predicted value of the data points is based on
two sets of data points with contradicting information.
In these situations, there is a risk of removing data
points that are correct. However, the consequences of
removing too many data points are not severe. In fact,
the removal of correct data points in the vicinity of
recombinations causes a local decrease of the effective
population size and has therefore the same effect as the
removal of an individual offspring genotype from the
mapping population. The consequences of these unjus-
tified removals can be solved by correcting the frame-
work map using the original data. This verification of
the framework map is done by maximum likelihood

comparison of the original markers with the framework
bins. Moreover, the risk of cleaning data points that
were not erroneous is sufficiently reduced by employing
the method in an iterative process with the mapping
algorithm.

The verification of the framework map by refitting
the original data does not provide indisputable evidence
for the true marker order. Nevertheless, it provides a
detailed overview of the ambiguities in the data. The
accuracy of the ultra-dense marker order can only be
assessed in simulation studies where the true marker
order is known. For potato, the consistency of the ge-
netic map with a physical map is expected to provide the
evidence for the current marker order.

The program has been applied for the construction of
the ultra-dense genetic linkage map of potato. All link-
age groups of this map contain more than 100 markers.
Accurate mapping of these large linkage groups was not
possible, despite the even small amounts of scoring er-
rors. Most of these errors could be erased by manual re-
evaluation of the AFLP gels, but in spite of these time-
consuming efforts, accurate marker ordering was still
severely complicated. With SMOOTH, the ambiguities
of the data were removed to construct a framework map
that provided accurate marker placement.

To a certain extent, error detection is available in the
current version of MapMaker (Lincoln and Lander
1992). Instead of removing possible errors, MapMaker
takes the possibility for a data point to be erroneous into
account and avoids potential map inflation. The errors
remain in the data set and still cause ordering problems,
therefore MapMaker is not adequate to calculate high
density maps.

Besides backcross populations, the concept of
SMOOTH can also be suitable for analyzing other
populations like F2. Dominance will nevertheless de-
crease the detection power of singletons. In this case, the
marker density should be higher than in backcross
populations to ensure a reliable singleton detection.

In conclusion, with the advent of ultra-dense genetic
linkage maps, a completely new approach of data
analysis is required. In combination with RECORD
(Van Os et al. 2005), this method provides a fast and
accurate way of positioning genetic markers along an
unambiguous framework map.
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